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Abstract—A straight foreward relation for muliticomponent gaseous diffusion coefficients is derived by

application of the elementary mean free path theory. The relevant parameters in this relation are obtained by

comparison with equations resulting from the kinetic theory of monatomic gases. As a result of this

procedure the muiticomponent diffusion coefficients are represented explicitly as a function of the binary and

self-diffusion coefficients. The accuracy of the new equation is very satisfactory. This is demonstrated by a
number of examples.

NOMENCLATURE

Dy, multicomponent diffusion coefficient
{kinetic theory);

& self-diffusion coefficient ;

Z4  binary diffusion coefficient;

DEF, multicomponent diffusion coefficient
(mean free path theory);

Jis diffusional mass flux vector;

k, Boltzmann-constant;

L mean free path for number density
transfer of component “i";

M,;,  molecular weight of component *i";

M,  molecular weight of gas mixture;

TN

m;,  mass of a molecule of component “i"";
N, number of components;
U, mean thermal speed of molecules of

sorre,

component “i";

U mean total velocity of molecules of
component “i";
7, mass average velocity;

X, mole fraction of component “i";
[TXCLIN

Do partial density of component “i";
0, total density.

1. INTRODUCTION

CONCENTRATION diffusion plays an important role in
many technical problems. Typical examples are ab-
lation cooling or combustion processes.

The multicomponent guseous diffusion coeflicients
are usually calculated by equations derived from the
kinetic theory of monatomic gases {1]. Especially for
mixtures with many components the numerical eva-
luation of these equations is extremely tedious and
often not feasible for practical problems. For this
reason various authors have derived approximations
based on the equations of the kinetic theory [2-5].
These investigations, except those by Schaber et al. [4],
did not lead to explicit relations for multicomponent
diffusion coefficients. Another means of obtaining
expressions for the diffusion coefficients or diffusional

muass fluxes is the application of the so called mean free
path theory, e.g. [6~8]. The mean free path theory, on
the other hand, has certain decisive disadvantages.
Depending on the relation adopted for calculating the
mean free paths the equations are either simple and
extremely inaccurate or nearly as complicated as those
derived from the exact kinetic theory [6-8].

For this reason the mean free path theory was never
seriously adopted for practical problems involving
transport coefficients. The present investigation re-
veals, that by comparison of relations following from
the mean free path theory with those of the “exact”
kinetic theory, relatively simple and very accurate
approximation equations may be derived for the
multicomponent coefficients.

2. BASIC EQUATIONS
Neglecting pressure and thermal diffusion, the fol-
lowing equations for the diffusional mass fluxes j; of
components “i" result from the kinetic theory of
monatomic gases in the 1. Chapman—-Enskog approxi-
mation [1].
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The diffusional mass flux j, of component “i" in
equations (2.1)—(2.3) is defined by
Ji=pi(v;— D) (24)

with

™M=

b= piY; (2.5)
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v; is the mean total velocity of component i and 7 the
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mass average velocity. In equations (2.1)-(2.5) M, is
the molecular weight, x; the mole fraction and p; the
partial density of component “i". M is the mean
molecular weight and p the bulk density of the mixture.

Equation (2.1), which represents the diffusional
mass flux j; explicitly as a function of the concentration
gradients grad x,, contains the multicomponent dif-
fusion coefficients D;,.

These are complex functions of temperature and
concentrations. In the first Chapman-Enskog appro-
ximation the concentration dependence disappears
only for 2-component mixtures.

Equations  (2.2), however, usually called
Stefan—Maxwell equations, yield the gradients grad x;
explicitly as function of the implicitly occurring dif-
fusional mass fluxes j. The advantage of equations
(2.2) is, that only the binary diffusion coefficients &,
are needed. These may easily be calculated by the well
known equations of the kinetic theory [1].

From the elementary mean free path theory {8] one
obtains the following relation for the difference of the
mean total velocities of the components i and k:

v;— v, = —3[u;l; grad (In x;) —u, [, grad (In x, )]
k=12,...N. (2:6)

In equations (2.6) u; is the mean thermal speed and /;
the mean free path for number density transfer of the
molecules of component “i".

Multiplication of equation (2.6) with the partial
density p, and a summation over all indices k yields, if
one takes account of equation (2.5)

p(v;—6) = —}pu;l; grad (In x;)

N
+31 Y powdigrad(ing,). (27)
k=

1
By introducing the relations p,/x, = pM;/M and
Y, grad x; = 0 the following equation is obtained:

+Miui1,-(1 - % ”grad X. (28)

By comparison of the two equations (2.8) and (2.1) the
following multicomponent diffusion coefficient Df’
based on mean free path theory may be defined:

1
= %[xiuklk + —(M—Mixi)uili‘\' (29)
M,

The form of equation (2.9) is extremely simple; on the
other hand it contains the unknown parameters u; and
. If one calculates u; and |, simply by the mean free
path theory, the results obtained are extremely un-
satisfactory. Even for binary diffusion coefficients
equation (2.9) predicts a completely wrong de-
pendence of D, on concentration, e.g. [8].

3. DERIVATION OF THE APPROXIMATION EQUATIONS

The unknown values u;/; in equations (2.8) and (2.9}
can be eliminated by comparison of these equations
with the relations following from the kinetic theory.

E. OBERMEIER and A. SCHABER

From equation (2.2) one obtains

lim j, = — 2 orad x, G.1)
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k#i
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M’ = lim M. 3.2)
x,—0

By considering the relation 3 ; grad x;, = 0 a com-
parison of equations (2.1) and (3.1) yields

. MM
lim D, = N/ k. (3.3)
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On the other hand it follows from equation (2.9) that
lim Dff = =— lim u,1;.
x,—0 3M -0
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We now postulate, that the coefficients D, and D4F are
identical. A comparison of equations (3.3) and (3.4)
then yields

3

lim gyl = ———. (3.5)
x—0 Z X;j

j=1‘(/l'f
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For the limiting case x; — 0 the term u;/; in equation
(3.5)is expressed by relations of the kinetic theory, i.e.
by the binary diffusion coefficients. No further infor-
mation may be gained by calculating the other limiting
case lim,, ., u,;/; from kinetic theory.

On the other hand, the mean free path theory yields
a relation between u;/, and the self-diffusion coefficient
Yiie

lim ul; = 3%, (3.6)

x,—1
In accordance with equations (3.5) and (3.6) the
following empirical equation for u;/; is proposed:

3.7)

The occurrence of the self-diffusion coefficient &; in
equation (3.7) is justified by the mean free path theory
but is contradictory to the equations of the exact
kinetic theory.

For this reason the factor f; in equation (3.7) was
introduced in order to allow an adaption to the
relations of the kinetic theory.

Equation (3.7) satisfies the limiting case of x; - O in
equation (3.5) and of x;— 1 in equation (3.6). By
introducing equation (3.7) into equation (2.9) one
obtains

FP __ L
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Multicomponent gaseous diffusion coefficients

The factors f; must now be determined. One obtains for
a binary mixture:

X
X X;
. fk + —
Z kk @ ik
As is well known, the binary diffusion coefficient of the
first Chapman—Enskog approximation is independent
of concentration. If one postulates, that Df = Dy,

then equation (3.9) at once results in the condition:
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For a binary mixture, therefore, the factors f; and f;
have to satisfy the condition (3.10) in order to gain
independence of concentration for the binary diffusion
coefficient.

For a mixture of three components i, k, [ it follows
from equation (3.7) that
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The equation for the same 3-component mixture, if
derived by the kinetic theory, has the same structure as
equation (3.11). By transformation of the equations
presented by Hirschfelder et ol. [1] the following
relation is obtained:

X;
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The similarity in structure of equations (3.11) and
(3.12) is quite surprising. The two equations are
identical, if the following conditions are fulfilled :
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From equations (3.13) one again obtains the condition
(3.10). Equation (3.10) is therefore a necessary con-
dition for the diffusion coefficients DSF of binary and
ternary mixtures to be identical with the coefficients
Dy defined by the kinetic theory.

Equation (3.10)is now assumed to be generally valid
for a definition of the factors f; and f,, although this
cannot be rigidly confirmed for mixtures with more
than three components.

On the other hand such relations as equations (3.13)
cannot be generalised for arbitrary multicomponent
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mixtures, since the terms f; and f, are not solely
dependent of the properties of components i and k.
For this reason f; and f, were approximated by
empirical relations. Numerical investigations of mix-
tures with 5-17 components showed, that the best
results were obtained with
fi=f = (Z4Zw)'"
AT e,

Equation (3.10) is satisfied by equation (3.14). Sub-
stitution of equation (3.14) in equation (3.8) yields the
final approximation formula for the multicomponent
gaseous diffusion coefficients:

(3.14)
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Equation (3.15) satisfies the following conditions:

{i) The limiting values of D for x; > 0 and x; - 1
are identical with the corresponding values D;, derived
by the kinetic theory. From equations (3.3) and (3.15)
follows:

lim Dff = lim D,,. (3.16)
x,—0 x;—0
Furthermore equation (3.15) yields
lim Dff = 2,,. (3.17)

x;=1

It can be shown, that this is also in accordance with the
kinetic theory.

(ii) The equation is exact for a binary mixture.

(iii) The equation is exact for a ternary mixture, if
the conditions

Ty= (giigll)”z Dy = (gﬁkkffu)l/z (3.18)

arefulfilled, i.e. the binary diffusion coefficients must be
equal to the geometric mean of the corresponding self-
diffusion coefficients.

This also makes it understandable physically, why
the self-diffusion coefficients appear in equation (3.15).
The ratios of the self-diffusion coefficients in equation
(3.15) may be regarded as approximations for the
ratios of binary diffusion coefficients.

In the following chapter the general applicability
and accuracy of equation (3.15) for multicomponent
mixtures is demonstrated by some specific examples.

4. EXAMPLES

To test the validity of equation (3.15) the multicom-
ponent diffusion coefficients were calculated for va-
rious gas mixtures. The diffusion coefficients obtained
by equation (3.15) were compared with the results
computed by the “exact” kinetic theory. The binary-
and self-diffusion coefficients were calculated by the
well known relations of the kinetic theory [1]. For the
mixture of dissociated air the potential parameters for
a Lennard--Jones 6—12 potential by Schaber et al. [4]
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were adopted. For the other mixtures these values were
taken from Svehla [9].

To begin with, let us examine the results for
dissociated air with the five components N,, G,, NO,
N and O. Figure 1 shows multicomponent diffusion
coefficients, which were calculated as a function of
temperature, once again with equation (3.15) and once
by the exact kinetic theory. The corresponding con-
centrations are the equilibrium values at a pressure of
p = 1 bar. In Fig. 1 only those six diffusion coefficients
out of twenty ure presented, for which the largest
differences between approximate and exact theory
occur.
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F1G. 1. Diffusion coefticients in the mixture of dissociated air.

The dashed curves show the results of equation
(3.15) and the solid curves represent “exact” values. As
can be seen from Fig. 1 the agreement between the
approximate and exact theory is very good. For the
other fourteen values of diffusion coefficients no signi-
ficant differences occur. The mean relative error for
this mixture is less than 3%,. Here one has to bear in the
mind, that the potential parameters, which are em-
ployed in both theories to calculate the binary dif-
fusion coefficients, are certainly less accurate, es-
pecially at high temperatures [4].

As a further example a mixture of hydrogen and
oxygen with the six components H, H,, O, OH, H,0
and O, was investigated. This mixture may be re-
garded as representing the oxygen-hydrogen com-
bustion. This mixture is particularly suited to test the
utility of equation {3.15), since the components have
extremely different molecular weights. This implies,
that also the diffusion coefficients differ largely.

Figure 2 shows those multicomponent diffusion
coeflicients of this mixture as a function of the
hydrogen concentration for which the largest differ-
ences occur. The temperature is T = 1500K and the
pressure p = 1 bar. In order to demonstrate the con-
centration dependence of the diffusion coefficients the
concentration of hydrogen was varied between 0 < x
< 1 whereas the concentrations of the other com-
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Fi1G. 2. Diffusion coefficients in a mixture of hydrogen and
oxygen.

ponents were taken to be equal, i.e. x, = (1 —x,,)/5. As
may be seen in Fig. 2, equation (3.15) permits the
calculation of multicomponent diffusion coefficients
with excellent accuracy even for mixtures with com-
ponents of very different molecular weights.

Figure 3 shows a number of diffusion coefficients for
the same mixture: in this case, however, the con-
centration of oxygen, the component with the largest
molecular weight, was varied between O < x5, < 1.

722 YOO U SN SO X
«.s\_‘N‘\"Q‘?_H
50 ]
le . Og-y \ T~
2 S et J~
cmé ~ ] - \\\
2 = -
H-02 ,/><\\\
-l >
10 e Hy-0, "",j:fw . L
:{’é;ff—
:’;"::f
St ~0;-0
———
%/_f——#‘—————‘—””'i
1
=T H0-0, i
psl bar i
24 T=IS0OK . (RO N
e K 117 THeOFY
e MFP Theory
7 1
0 a2 a4 as 08 0
X0z
—_—

Fii. 3. Diffusion coefficients in a mixture of hydrogen and
oxygen.



Multicomponent gaseous diffusion coefficients

In addition to the above two examples various other
mixtures were investigated. These mixtures and the
observed mean relative deviations of the coefficients
D}7 from those of the kinetic theory are listed in Table
1. The temperatures were varied between 1000 < T
< 7000 K. The concentrations of the components with
the smallest and largest molecular weight were sys-
tematically varied as described above for the H-O
mixture.

Table 1
Mean
Number relative
of error
Mixture components %)

N,,0,.NO,N, O 5 <3
H,H,,0,0H,H,0,0, 6 <3
C,N,O,CN, CO, C,,
N,, 0,.C0O, 9 <3
H, H,, CH;,CH,, O
OH, H,0,CO, N, NO,
0,, H,0,,N,0,CO, i4 <1.5
H, H,.C,N, O, OH,
H,0, CH4, N,, 0,,CN,
CO,NO, C,, C,H,,
HCN, CO, 17 <1

As one can see in Table 1, the approximation
equation {3.15) yields excellent results. Only in excep-
tional cases greater differences between DEF and Dy,
can occur. These are for a mixture of two excess- and
some trace components, if the diffusion coefficient of an
excess-component with extremely large molecular
weight into a trace-component with extremely small
molecular weight is computed. The reason is, that the
numerator of the right hand side of equation (3.15)
contains the ratio of the molecular weights of the heavy
and the light component and therefore a small error in
the denominator on the right hand side may be
increased strongly by this ratio.

This deviation, however, hus no effect on the result-
ing diffusional mass flux j; of component i since for its
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calculation Dy, is multiplied by the extremely small
concentration gradient grad x, of the trace component
k and therefore becomes negligible in compurison with
the other terms.

5. SUMMARY

The approximation equation (3.15) permits a simple
and accurate calculation of multicomponent gaseous
diffusion coefficients. The dominant advantages are
the simple and explicit representation as compared
with the computational complexity of the exact theory.

The greatest accuracy is achieved if either the
molecular weights of the components do not differ
strongly or if the number of components is large.
However, the accuracy is very satisfactory for mixtures
with components of extremely different molecular
weights. This was demonstrated for various mixtures
with up to 17 components.
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UNE FORMULE SIMPLE, DERIVEE DE LA THEORIE DU LIBRE
PARCOURS MOYEN, POUR LES COEFFICIENTS DE DIFFUSION DANS
LES GAS A PLUSIEURS COMPOSANTS

Résumé— Par application de la théorie élémentaire du libre parcours moyen, on dérive une relation directe
pour les coefficients de diffusion dans les gaz & plusieurs composants.

Les paramétres intervenant dans cette relation sont obtenus par comparaison avec des équations qui
résultent de la théorie des gaz monoatomiques. I résulte de cette procédure que les coefficients de
diffusion sont représentés explicitement comme fonctions des coefficients binaires et d’autodiffusion. La
précision de la nouvelle formule est trés satisfaisante. Ceci est démontré par de nombreux exemples.

BEZIEHUNG ZUR BERECHNUNG DER POLYNAREN GASDIFFUSIONSKOEFFIZIENTEN

Zysammenfassung—Aus der clementaren Weglédngentheorie wird eine einfach strukturierte Beziehung zur
Berechnung der polyniiren Gasdiffusionskoeffizienten hergleitet. Die in dieser Gleichung auftretenden
unbekannten Parameter werden durch einen Vergleich mit den aus der kinetischen Theorie einatomiger
Gase folgenden Bezichungen bestimmt. Auf diese Weise konnen die polyniren Diffusionskoeftizienten
explizit als Funktion der biniiren Diffusionskoefizienten und der Selbstdiffusionskoeffizienten dargestelit
werden. Die Genauigkeit dieser Beziehung ist sehr gut. Dies wird anhand einiger Beispiele demonstriert.
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TIPOCTASA ®OPMVJIA U1 KO3®PHUMEHTOB MHOI'OKOMIOHEHTHON
JUOOYINH TA3A, MOJVUEHHAS C MOMOMBIO TEOPUM CPEJHEH
JJIMHBI CBOBOJHOI'O ITPOBETA

AmmoTamms — BpiBeicHO nPOCTOE COOTHOWIEHHE Ang Ko3hbuunentop nudohy3uy MHOTOKOMIIOHEHT~

HOW CMECH ra30B C MOMOIILIY IIEMEHTAPHON Teopuu cpeaHeldt mnuHel cBobGoanoro npobera. Ilapa-

METPbl B 3TOM COOTHOLICHHM NOJYYSHBI MOCPEACTBOM CPAaBHCHHA ¢ YPAaBHEHHAMH KHHETHYCCKOH

Teopud Ui OAHOATOMHbIX ra3os. KosddmumenTsl aupdy3Hn MHOTOKOMIOHEHTHOH CMECH Ipen-

craBneHsl B ABHOW dopme kak ¢yHxuns OMHapHBIX kKoddduunenros muddysnn U xosdduuneHTOR

camoaudipysun. TOYHOCTE HOBOTO YPaBHEHHA BeChbMa YIOBJIETBOPHTENLHA, YTO TOATBEPNIAETCH
LeJIbIM PAOOM COTIOCTAaBNICHHH.



